Solving problems with actors

Robey Pointer
<robeypointer@gmail.com>

http://github.com/robey

http://github.com/robey
http://github.com/robey

How | learned to love actors

How | learned to love actors

Wednesday, 24 June 2009

How | learned to love actors

IBSNLGU M1\
‘ 2 \\\. g ~j..¥. "\}\?;\, .
e \ M

Wednesday, 24 June 2009

How | learne

Q' ‘wilie'lr'i't' Y u

alis'Ad' el 9 L h) iy K|

iz IxAC Av AbAn Am)C

-

OO 6 Messages - Jorge Salvador Caffarena
JOFGE SAVACOT LATTArENA went away

Away Message: Busy / Ocupado
Away Message: 'm no believer, | just call you liar instead

Jorge Salvacor Caffarena came back

moof

hey

what's up

M Christopher fors f Jorge Salvador Ca & Adam lser
[—

d to love actors

& Jeffrey Melloy

Writing a chat proxy server for phones

Wednesday, 24 June 2009

: the problem

Chat proxy

10NS

¢ long-lived connect

Wednesday, 24 June 2009

Chat proxy: the problem

¢ long-lived connections
¢ many, many of them

Wednesday, 24 June 2009

Chat proxy: the problem

¢ long-lived connections
¢ many, many of them
e usually idle, with short bursts of traffic

Wednesday, 24 June 2009

Chat proxy, take 1

® each session is a thread

chatd threads

,,///4

SE€

S€

SE€

SE

session

Chat proxy, take 1

® each session is a thread
e usually blocked on I/O (read)

chatd threads

%

S€

S€

SE€

S€

session

Chat proxy, take 1

® each session is a thread
e usually blocked on I/O (read)
® 5000 threads [sessions max in practice

chatd threads

,,//,'//h

S€

S€

SE€

S€

session

Chat proxy, take 1

® each session is a thread

e usually blocked on I/O (read)

® 5000 threads [sessions max in practice
¢ easy to understand; scales poorly

chatd threads

,,//,'//h

S€

SE€

SE€
S€

session

Chat proxy, take 1

® each session is a thread

e usually blocked on I/O

® 5000 threads [sessions max in practice
¢ easy to understand; scales poorly

class ChatSession {
public void start(Socket s) {
// sequential code...

}
}

Chat proxy, take 2

e thread pool and async /O

chatd

thread pool
|

1
th ' |
th

th o sessions
thread

Wednesday, 24 June 2009

Chat proxy, take 2

e thread pool and async /O
® sessions are ‘“state objects”

chatd

thread pool
|

1
tH ' ,
th

th o sessions
thread

Wednesday, 24 June 2009

Chat proxy, take 2

e thread pool and async /O
® sessions are “state objects”
e harder to read; more scalable

chatd

thread pool
|

1
tH ‘ ,
th

th o sessions
thread

Wednesday, 24 June 2009

Chat proxy, take 2

e thread pool and async /O
® sessions are “state objects”
e harder to read; more scalable

class ChatSession {
public void gotData(byte[] data) {
// buffer, decode
// check state...

}
}

Chat proxy, take 2

o fatal flaw: blocking on other services

// download profile image:
byte[] data = HTTPClient.get(url);
// oh noes! now it may be 2 seconds later!

Chat proxy, take 2

o fatal flaw: blocking on other services
e |locks up a precious thread

// download profile image:
byte[] data = HTTPClient.get(url);
// oh noes! now it may be 2 seconds later!

Chat proxy, take 2

o fatal flaw: blocking on other services
e |locks up a precious thread
¢ sync l/O inside async callbacks

// download profile image:
byte[] data = HTTPClient.get(url);
// oh noes! now it may be 2 seconds later!

Chat proxy, take 3

e fix all APIs to be async

Chat proxy, take 3

e fix all APIs to be async

HTTP.get(url, new HTTPCallback() {
public void success(byte[] data) {
sendImageToPhone(transcode(data));
// continue processing client request

}

public void failure(Exception x) { ... }

})s

Chat proxy, take 3

e fix all APIs to be async

HTTP.get(url, new HTTPCallback() {
public void success(byte[] data) {
sendImageToPhone(transcode(data));
// continue processing client request

}

public void failure(Exception x) { ... }

})s

o if it doesn’t fit on a slide, it ain’t good code

Actors for 1/O

® each session is an actor

Actors for 1/O

® each session is an actor
¢ |/O events are just messages

Actors for 1/O

® each session is an actor
¢ |/O events are just messages
¢ can “seek ahead” for specific events

Actors for 1/O

® each session is an actor
¢ |/O events are just messages
¢ can “seek ahead” for specific events

react {

case DataReceived(data) => ...

case SessionClosed => ...

}

Wednesday, 24 June 2009

Actors for 1/O

® works really well with java.nio

Actors for 1/O

® works really well with java.nio
® actor-based wrapper for apache mina:
naggati (on my github page)

Actors for 1/O

® works really well with java.nio
® actor-based wrapper for apache mina:
naggati (on my github page)

HTTP.get(url)
react {
case HTTP.Success(data) =>
sendImageToPhone(transcode(data));
// continue...
case HTTP.Failure(reason) => ...

nesday, 24 June 2009

Kestrel

Wednesday, 24 June 2009

Kestrel

¢ very simple message queue

cluster

l daemon |
.
‘ daemon |

daemon

- >' daemon |

i daemon l

kestrel

Wednesday, 24 June 2009

Kestrel

¢ very simple message queue
¢ each server stands alone

cluster

daemon
[soomen |

[] kestrel
daemon

[daemon j/'

- >[daemon]

e

Wednesday, 24 June 2009

Kestrel

¢ very simple message queue

® each server stands alone

kestrel

kestrel

kestrel

kestrel

memcache client

Wednesday, 24 June 2009

Kestrel

e each kestrel instance is strictly ordered

—

-

- -
-
=)

hAttp://WwwwaFlickr.€on/photos/m

Wednesday, 24 June 2009

Kestrel

e each kestrel instance is strictly ordered
¢ ...making the whole cluster loosely ordered

-

3

Rttp:/ /W Flickr . €on/photos /o

Wednesday, 24 June 2009

Kestrel

¢ many long-lived connections

Wednesday, 24 June 2009

Kestrel

¢ many long-lived connections
e usually idle, with bursts of activity

Kestrel

¢ many long-lived connections
e usually idle, with bursts of activity
¢ (sound familiar?)

Kestrel

¢ using naggati, one actor per client

Kestrel

¢ using naggati, one actor per client
e memcache protocol interface as a mina

plugin

Wednesday, 24 June 2009

Kestrel

¢ using naggati, one actor per client
e memcache protocol interface as a mina

plugin
e 1.5 kloc

Wednesday, 24 June 2009

Kestrel

¢ using naggati, one actor per client

e memcache protocol interface as a mina
plugin

e 1.5 kloc

e 7 class files (+ 8 test files)

Kestrel

wins

scala: about half the lines of code as java
actors: avoided concurrency puzzles
mina: complete async I/O library

Wednesday, 24 June 2009

Kestrel

® success

Wednesday, 24 June 2009

Kestrel

® success

Kestrel

® success often means “good enough”

Wednesday, 24 June 2009

Kestrel

® success often means “good enough”
¢ horizontally scales by adding machines

Wednesday, 24 June 2009

Kestrel

® success often means ‘“good enough”
¢ horizontally scales by adding machines
¢ simple to understand & operate

Kestrel

® success often means ‘“good enough”

¢ horizontally scales by adding machines

¢ simple to understand & operate

¢ minimal locking | thinking about concurrency

Kestrel

® success often means ‘“good enough”

¢ horizontally scales by adding machines

¢ simple to understand & operate

¢ minimal locking | thinking about concurrency

‘actors!

Wednesday, 24 June 2009

Kestrel

® success often means ‘“good enough”

¢ horizontally scales by adding machines

¢ simple to understand & operate

¢ minimal locking | thinking about concurrency

>stats

STAT uptime 3138307
STAT cmd_get 4090226689
STAT cmd_set 1631380861
STAT bytes written 2371564246614

Wednesday, 24 June 2009

Serendipity

Wednesday, 24 June 2009

Serendipity

® actors are just one of many tools

consumer producer

v

GET

wait for item

Y

PUT

P
—
— -
— -

got it! E notify

| |

Wednesday, 24 June 2009

Serendipity

® actors are just one of many tools
e can be combined with locks/etc

consumer producer

v

GET

wait for item

\

got it! 3 notify

| |

PUT

—
- —
—
— -
— -

Wednesday, 24 June 2009

Serendipity

® actors are just one of many tools

e can be combined with locks/etc

e example: want to “hand off”’ a queue item
from a producer to a consumer

consumer producer

v

GET

wait for item

\

got it! 3 notify

| |

PUT

- —
-
— —
—
-

Wednesday, 24 June 2009

Serendipity

val waiters = new ArrayBuffer[Actor]
def put(item: QItem) {

synchronized {
if (waiters.size > 0) {
waiters.remove(@) ! ItemArrived

}
}
}

Serendipity

def removeWithin(timeout: Long) {
synchronized {
if (queue.isEmpty) {
waiters += self
receiveWithin(timeout) {
case ItemArrived => remove()
case TIMEOUT => None

Serendipity

¢ yes, |l used synchronized

Serendipity

¢ yes, |l used synchronized
e probably subject to excommunication now

Serendipity

¢ yes, |l used synchronized
e probably subject to excommunication now
¢ but the results were worth it

Where actors didn’t work

o first draft: each queue is an actor!

Where actors didn’t work

o first draft: each queue is an actor!
e queue ! PUT(item)

Where actors didn’t work

o first draft: each queue is an actor!
e queue ! PUT(item)
¢ message delivery overhead was too high

Where actors didn’t work

o first draft: each queue is an actor!

e queue ! PUT(item)

¢ message delivery overhead was too high
¢ the put operation was just too small:

memoryQueue.add(item)
journal.write(Put(item))

Where actors didn’t work

o first draft: each queue is an actor!

e queue ! PUT(item)

¢ message delivery overhead was too high
¢ the put operation was just too small:

memoryQueue.add(item)
journal.write(Put(item))

¢ find this out with profiling -- don’t guess!

Where actors are shaky (in scala)

o lifetime issues still being shaken out
(easy to workaround; fixed in next release)

Where actors are shaky (in scala)

o lifetime issues still being shaken out
(easy to workaround; fixed in next release)
¢ mixing threads with actors
(raw threads get proxy actors which are
hard to GC correctly)

Where actors are shaky (in scala)

o lifetime issues still being shaken out
(easy to workaround; fixed in next release)
¢ mixing threads with actors
(raw threads get proxy actors which are
hard to GC correctly)
¢ but! TOP MINDS are working on it

Where actors are shaky (in scala)

o lifetime issues still being shaken out
(easy to workaround; fixed in next release)
¢ mixing threads with actors
(raw threads get proxy actors which are
hard to GC correctly)
¢ but! TOP MINDS are working on it
¢ scala 2.8 should have significant
improvements [simplifications

FIN

Wednesday, 24 June 2009

