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Writing a chat proxy server for phones
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Chat proxy: the problem

¢ long-lived connections
¢ many, many of them
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Chat proxy: the problem

¢ long-lived connections
¢ many, many of them
e usually idle, with short bursts of traffic
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Chat proxy, take 1

® each session is a thread
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Chat proxy, take 1

® each session is a thread

e usually blocked on I/O (read)

® 5000 threads [ sessions max in practice
¢ easy to understand; scales poorly
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Chat proxy, take 1

® each session is a thread

e usually blocked on I/O

® 5000 threads [ sessions max in practice
¢ easy to understand; scales poorly

class ChatSession {
public void start(Socket s) {
// sequential code...

}
}




Chat proxy, take 2

e thread pool and async /O
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e thread pool and async /O
® sessions are “state objects”
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Chat proxy, take 2

e thread pool and async /O
® sessions are “state objects”
e harder to read; more scalable

class ChatSession {
public void gotData(byte[] data) {
// buffer, decode
// check state...

}
}
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// download profile image:
byte[] data = HTTPClient.get(url);
// oh noes! now it may be 2 seconds later!
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Chat proxy, take 2

o fatal flaw: blocking on other services
e |locks up a precious thread
¢ sync l/O inside async callbacks

// download profile image:
byte[] data = HTTPClient.get(url);
// oh noes! now it may be 2 seconds later!
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e fix all APIs to be async

HTTP.get(url, new HTTPCallback() {
public void success(byte[] data) {
sendImageToPhone(transcode(data));
// continue processing client request

}

public void failure(Exception x) { ... }

})s




Chat proxy, take 3

e fix all APIs to be async

HTTP.get(url, new HTTPCallback() {
public void success(byte[] data) {
sendImageToPhone(transcode(data));
// continue processing client request

}

public void failure(Exception x) { ... }

})s

o if it doesn’t fit on a slide, it ain’t good code
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Actors for 1/O

® each session is an actor
¢ |/O events are just messages
¢ can “seek ahead” for specific events

react {

case DataReceived(data) => ...

case SessionClosed => ...

}
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Actors for 1/O

® works really well with java.nio
® actor-based wrapper for apache mina:
naggati (on my github page)

HTTP.get(url)
react {
case HTTP.Success(data) =>
sendImageToPhone(transcode(data));
// continue...
case HTTP.Failure(reason) => ...

nesday, 24 June 2009
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Kestrel

¢ very simple message queue

cluster
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Kestrel

¢ very simple message queue
¢ each server stands alone
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Kestrel

¢ very simple message queue

® each server stands alone

kestrel

kestrel

kestrel

kestrel

memcache client
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Kestrel

e each kestrel instance is strictly ordered
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Kestrel

e each kestrel instance is strictly ordered
¢ ...making the whole cluster loosely ordered
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¢ many long-lived connections
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Kestrel

¢ many long-lived connections
e usually idle, with bursts of activity
¢ (sound familiar?)




Kestrel

¢ using naggati, one actor per client




Kestrel
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e memcache protocol interface as a mina

plugin
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Kestrel

¢ using naggati, one actor per client

e memcache protocol interface as a mina
plugin

e 1.5 kloc

e 7 class files (+ 8 test files)




Kestrel

wins

scala: about half the lines of code as java
actors: avoided concurrency puzzles
mina: complete async I/O library
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® success
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® success often means ‘“good enough”

¢ horizontally scales by adding machines

¢ simple to understand & operate

¢ minimal locking | thinking about concurrency

‘actors!
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Kestrel

® success often means ‘“good enough”

¢ horizontally scales by adding machines

¢ simple to understand & operate

¢ minimal locking | thinking about concurrency

>stats

STAT uptime 3138307
STAT cmd_get 4090226689
STAT cmd_set 1631380861
STAT bytes written 2371564246614
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Serendipity

® actors are just one of many tools

consumer producer
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® actors are just one of many tools
e can be combined with locks/etc
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Serendipity

® actors are just one of many tools

e can be combined with locks/etc

e example: want to “hand off”’ a queue item
from a producer to a consumer

consumer producer

v

GET

wait for item
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got it! 3 notify
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Serendipity

val waiters = new ArrayBuffer[Actor]
def put(item: QItem) {

synchronized {
if (waiters.size > 0) {
waiters.remove(@) ! ItemArrived

}
}
}




Serendipity

def removeWithin(timeout: Long) {
synchronized {
if (queue.isEmpty) {
waiters += self
receiveWithin(timeout) {
case ItemArrived => remove()
case TIMEOUT => None




Serendipity
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Serendipity

¢ yes, |l used synchronized
e probably subject to excommunication now
¢ but the results were worth it
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Where actors didn’t work

o first draft: each queue is an actor!

e queue ! PUT(item)

¢ message delivery overhead was too high
¢ the put operation was just too small:

memoryQueue.add(item)
journal.write(Put(item))

¢ find this out with profiling -- don’t guess!
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Where actors are shaky (in scala)

o lifetime issues still being shaken out
(easy to workaround; fixed in next release)
¢ mixing threads with actors
(raw threads get proxy actors which are
hard to GC correctly)
¢ but! TOP MINDS are working on it
¢ scala 2.8 should have significant
improvements [ simplifications
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